
ONOS

Architecture, Abstractions & Performance

What is ONOS?

Open Network Operating System (ONOS) is an open
source SDN network operating system. Our mission is to
enable Service Providers to build real SDN/NFV Solutions.

ONOS Community

Brief Retrospective
● Started with a minimal platform with only a few apps

○ built with sound structure and solid code & minimalistic REST API
○ 4 apps and 1 SB plugin

● Added new core functionality and apps with each release
○ deliberately balancing investments in platform vs. use-cases and apps
○ show innovation, but also take pragmatic steps to be deployment-ready
○ maintain coherence of architecture and quality of code

● Now a platform with many features and apps
○ new capabilities, distributed primitives and even greater extensibility
○ now 70+ apps, including SB plugins, drivers, and samples

Quarterly Releases
● Avocet (1.0.0) released 2014-12

○ Initial release of clean and modular code-base, protocol independence
● Blackbird (1.1.0) released 2015-03

○ Improved performance, scale-out, increased robustness
● Cardinal (1.2.0) released 2015-06

○ New use-cases, additional core features, additional SB protocols
● Drake (1.3.0) released 2015-09

○ Platform enhancements, security, UI enhancements
● Emu (1.4.0) - released 2015-12

○ CORD features, prototype of dynamic cluster scaling
● Falcon (1.5.0) - released 2016-03

○ Dynamic cluster scaling, model extensibility, intents on flow objectives

Quarterly Releases
● Falcon (1.5.0) - released 2016-03

○ dynamic cluster scaling, model extensibility, intents on flow objectives

● Goldeneye (1.6.0) - planned for 2016-06
○ spring cleaning, intent framework, YANG tools, GUI scaling, P4 PoC

● H... (1.7.0) - planned for 2016-09
○ separate platform & core, network hypervisor, YANG at NB, P4 support

● . . .

Platform Hardening
● Significantly improved performance

○ published white-paper and established relevant performance metrics

● Further increased quality and fault-tolerance
○ fixed defects and added a repertoire of robust distributed structures
○ fixed defects in 3rd party code and contributed changes upstream

● Improved security
○ northbound (REST, CLI & GUI), southbound and east-west secured

● Improved usability and supportability
○ deployment, component configurability, centralized app management
○ network configuration, GUI enhancements & extensibility
○ dynamic cluster scaling and model extensibility

Process Enhancements
● Established deprecation policy for API compatibility

○ give fair warning to app developers before APIs change or vanish
○ balances stability vs. ability to innovate or respond to feedback

● Incubating functionality over multiple releases
○ development of some features takes more time than a single release
○ introduce preliminary functionality in one release
○ harden & refine in the next release

● Broadening the set of code submitters
○ granting ability to +2/submit to developers based on code/review merit
○ serves both to empower the community and to off-load the core team

ONOS & Approach to SDN
● Move with urgency, but deliberately
● Mind the fundamentals & beware of yak-shaving
● Keep balance between innovation, utility and stability
● Allow legacy devices to participate in SDN, but not to

deform or diminish the SDN vision

Why ONOS?

Service Provider Networks
● WAN core backbone

o Multi-Protocol Label Switching (MPLS) with Traffic Engineering (TE)
o 200-500 routers, 5-10K ports

● Metro Networks
o Metro cores for access networks
o 10-50K routers, 2-3M ports

● Cellular Access Networks
o LTE for a metro area
o 20-100K devices, 100K-100M ports

● Wired access / aggregation
o Access network for homes; DSL/Cable
o 10-50K devices, 100K-1M ports

Key Performance Requirements

 ONOS

AppsApps

Global Network View / StateGlobal Network View / State

high throughput | low latency | consistency | high availability

High Throughput:
 ~500K-1M paths setups / second
 ~3-6M network state ops / second

High Volume:
~500GB-1TB of network state data

Difficult challenge!

Architectural Tenets
● High-availability, scalability and performance

○ required to sustain demands of service provider & enterprise networks

● Strong abstractions and simplicity
○ required for development of apps and solutions

● Protocol and device behaviour independence
○ avoid contouring and deformation due to protocol specifics

● Separation of concerns and modularity
○ allow tailoring and customization without speciating the code-base

ONOS Distributed Architecture

NB Core API

Distributed Core
(state management, notifications, high-availability & scale-out)

SB Core API

Protocols

Providers

Protocols

Providers

Protocols

Providers

Protocols

Providers

AppsApps

ONOS Distributed Architecture

NB Core API

Distributed Core
(state management, notifications, high-availability & scale-out)

SB Core API

Protocols

Providers

Protocols

Providers

Protocols

Providers

Protocols

Providers

AppsApps

Distributed Core
(state management, notifications, high-availability & scale-out)

SB Core API

NB Core API

Providers Providers Providers Providers

Protocols Protocols Protocols Protocols

ONOS Core Subsystems

Device Link Host

Topology

Flow Rule

Path

Packet

StatisticsIntent

Application

Leadership

Messaging

Storage Region

Mastership

Driver

Group

Security

Flow Objective

Event

OpenFlow NetConf OVSDB

Core Cluster

. . .

Proxy ARPMobility L2 Forwarding

REST API GUI CLI

Network Cfg.

SDN IP / BGP Packet / Optical

Tunnel

. . .

OSGi / Apache Karaf

Network Virt.Device Cfg.

Config

UI Extension

External Apps

Graph

Discovery Tenant . . .

 Manager
 Component

 Manager
Component

ONOS Core Subsystem Structure

 Provider
 Component

 Provider
 Component

 App
 Component

Listener

notify

command

command

sync & persist

add & remove
query &
command

 App
 Component

 Provider
 Component

 Manager
 Component

 Manager
Component

ProviderRegistry

Provider

ProviderService

ServiceAdminService

Listener

notify

register & unregister

command

command

sensing

add & remove
query &
command

Protocols

 Store Store

 Provider
 Component

ProviderRegistry

Provider

ProviderService

register & unregistersensing

Protocols

ServiceAdminService

 Store Store

sync & persist

ProviderRegistry ProviderRegistry

ProviderProvider

ProviderServiceProviderService

AdminService AdminServiceService Service

ListenerListener

Key Northbound Abstractions
● Network Graph

○ Directed, cyclic graph comprising of infrastructure devices,
infrastructure links and end-station hosts

● Flow Objective
○ Device-centric abstraction for programming data-plane flows in table

pipeline-independent manner

● Intent
○ Network-centric abstraction for programming data-plane in topology-

independent manner

Flow Objective Subsystem
● Problem: Applications today must be pipeline aware, effectively making them applicable to specific HW.

Controller Platform

 ? ? ?

Flow Objective Subsystem
● Problem: Applications today must be pipeline aware, effectively making them applicable to specific HW.

Flow Objective Abstraction
● Problem: Applications currently must be pipeline aware, effectively making applicable on specific HW.

Flow objectives enable developers to write applications once for all pipelines

First attempt at
interoperability

between OF 1.3
switch

Flow Objective Service

● Applications use Objective to take advantage multi-table architectures
● Other services also make use of the Objective service (eg. Intent Service)
● Device driver translates objectives to the specific flow rules for a given device

Flow Objectives
● Flow Objectives describe a SDN application’s objective

behind a flow it is sending to a device

● We currently only have three types of objectives:
1. Filtering Objective
2. Forwarding Objective
3. Next Objective

Filtering Objective
● �Filter -> only Permit or Deny

options
● �On criteria (match fields)

Example:
Peering Router Switch Port : X

Permit: MAC 1, VLAN 1, IP 1, 2, 3
Permit: MAC 1, VLAN 2, IP 4, 5

Filtering Objective
● �Filter -> only Permit or Deny

options
● �On criteria (match fields)

Example:
Peering Router Switch Port : X

Permit: MAC 1, VLAN 1, IP 1, 2, 3
Permit: MAC 1, VLAN 2, IP 4, 5

Next Objective
● Next -> next hop for forwarding
● Similar to OF group
● Keyed by a NextId used in

Forwarding Objectives

Forwarding Objective

● Forwarding: { Selector -> Next Id }
● Forwarding Types: Specific or Versatile

○ Specific -> MAC, IP, MPLS forwarding tables
○ Versatile -> ACL table

● NextId is resolved to whatever the driver previously built
for the corresponding Next Objective

Objectives - Simpler applications

Flow Objective Summary

● Flow Objective Service: Abstraction for applications to
be pipeline unaware while benefiting from scalable,
multi-table architectures

● Aims to make it simple to write apps
● First attempt at achieving interoperability between OF

1.3 implementations

Building Network Applications
● Each application requires complex path computation

and rule installation engines and state machines
● Inconsistent behavior in the face of failures

○ Failures may be handled in different ways (or not at all)
● Bugs need to fixed in multiple places (applications)
● Expensive to upgrade/refactor behavior across all

applications; e.g.
○ Improve performance
○ Support new types of devices
○ Implement better algorithms

● Difficult or impossible to resolve conflicts with other
applications

Intent Framework
• Provides high-level, network-centric interface

that focuses on what should be done rather than
how it is specifically programmed

• Abstracts unnecessary network complexity from
applications

• Maintains requested semantics as network
changes

• High availability, scalability and high
performance

Example Applications
● SDN-IP Peering

○ Connect internal BGP software daemon to external BGP routers
○ Install learned routes to forward IP traffic to appropriate egress point

● Multi-level (IP / Optical) Provisioning
○ Provision optical paths/tunnels with constraints

● Content Acquisition / Video Streaming (DirecTV)
○ Establish multicast forwarding from a sender to set of receivers

● Virtual Network Gateway (vBNG)
○ Provide connectivity between a private host and the Internet

● Bandwidth Calendaring
○ Establish tunnels with bandwidth guarantees between two points at a

given time

Intent Example
Host to Host Intent

Intent Example
Host to Host Intent

Intent Service API

submit()

Intent Example

COMPILATION

Path IntentPath Intent

Host to Host Intent

Intent Example

COMPILATION

INSTALLATION

Flow Rule Batch Flow Rule Batch

Flow Rule BatchFlow Rule Batch

Path IntentPath Intent

Host to Host Intent

Intent Framework Summary
● Intents are a network-centric programming

abstraction that reduce application complexity.

● Intents provide device-agnostic behavior with
persistency and high performance across network
failures.

● Intent framework has moved from prototype to
production deployments.

ONOS Distributed Architecture
● Distributed

○ Set up as a cluster of instances
● Symmetric

○ Each instance runs identical software and configuration
● Fault-tolerant

○ Cluster remains operational in the face of node failures
● Location Transparent

○ A client can interact with any instance. The cluster presents the
abstraction of a single logical instance

● Dynamic (in progress)
○ The cluster can be scaled up/down to meet usage demands

ONOS 1 ONOS 2 ONOS 3

ONOS Cluster

ONOS 1 ONOS 2 ONOS 3

Master Standby

ONOS Cluster

ONOS 1 ONOS 2 ONOS 3

ONOS Cluster

ONOS 1 ONOS 2 ONOS 3

Network
Events

Peer
Notifications

Peer
Notifications

Topology state inside a Node

Notify Listeners

Network Events and Ordering
Network Events are timestamped with (t , s)

 t → mastership term number
 s → sequence number in term

Series of timestamps for port X: … (4, 4) (4, 5) (5, 1) (5, 2) …
 ↑

 mastership term boundary

Network Topology State
● Eventually Consistent: Reads are monotonically

consistent
● Low overhead reads and writes

○ 2-3 ms latency for reacting to network events
● Gossip based Anti-Entropy protocol fixes divergent

copies
● Generalized as EventuallyConsistentMap<K, V>

State Management in ONOS
● Core platform feature
● Typically one of hardest pieces to get right and it is

better to solve it once
● Better if applications can focus on business logic
● ONOS exposes a set of primitives to cater to different

use cases
● Primitives span the consistency continuum

share nothing strongweak

ONOS Distributed Primitives
● EventuallyConsistentMap<K, V>

○ Map abstraction with eventual consistency guarantee
● ConsistentMap<K, V>

○ Map abstraction with strong linearizable consistency
● LeadershipService

○ Distributed Locking primitive
● DistributedQueue<E>

○ Distributed FIFO queue with long poll support
● DistributedSet<E>

○ Distributed collection of unique elements
● AtomicCounter

○ Distributed version of Java AtomicLong
● AtomicValue<V>

○ Distributed version of Java AtomicReference

p1 A CB

A B C D ECluster

p2 B DC

p3 C ED

p4 D AE

p5 E BA

Behind the scenes...

Data is partitioned into
Replica Sets

B C

A Raft consensus is used to maintain a
Replicated State Machine

p1 A CB

Inside a Replica Set

p1 A CB

A B C D ECluster

p2 B DC

p3 C ED

p4 D AE

p5 E BA

Data placement

UPDATE
key

p1

p2

p3 p4

p5

p1 A CB

A B C D ECluster

p2 B DC

p3 C ED

p4 D AE

p5 E BA

Transactional Updates

UPDATE
key1 AND key2

p1

p2

p3 p4

p5

● 2 phase commit for atomic cross partition updates
● Complexity hidden from user

Dynamic Clustering

● Ability to grow/shrink a cluster to suit usage demands

● Extract cluster metadata to a separate logical store

● Reshuffle data and control responsibilities to ensure
fault-tolerance and load balance

Performance Metrics
● Device & link sensing latency

○ measure how fast can controller react to environment changes, such
as switch or port down to rebuild the network graph and notify apps

● Flow rule operations throughput
○ measure how many flow rule operations can be issued against the

controller and characterize relationship of throughput with cluster size
● Intent operations throughput

○ measure how many intent operations can be issued against controller
cluster and characterize relationship of throughput with cluster size

● Intent operations latency
○ measure how fast can the controller react to environment changes and

reprovision intents on the data-plane and characterize scalability

Link Up/Down Latency

● Since we use LLDP & BDDP to discover
links, it takes longer to discover a link
coming up than going down

● Port down event trigger immediate teardown
of the link.

Flow Throughput results

● Single instance can install over 500K
flows per second

● ONOS can handle 3M local and 2M
non local flow installations

● With 1-3 ONOS instances, the flow
setup rate remains constant no
matter how many neighbours are
involved

● With more than 3 instances injecting
load the flow performance drops off
due to extra coordination required.

Intent Throughput Results

● Processing clearly scales as cluster size increases

Intent Latency Results

● Less than 100ms to install or withdraw a batch of intents
● Less than 50ms to process and react to network events

○ Slightly faster because intent objects are already replicated

Join the journey @ onosproject.org

Software Defined Transformation of Service Provider Networks

